Affiliation:
1. Department of Mathematics, College of Engineering and Physical Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
2. Université Côte d’Azur, CNRS-Institut de Physique de Nice,17 Rue Julien Lauprêtre, 06200 Nice, France
Abstract
The statistical evolution of ensembles of random, weakly interacting waves is governed by wave kinetic equations (WKEs). To simplify the analysis, one frequently works with reduced differential models of the wave kinetics. However, the conditions for deriving such reduced models are seldom justified self-consistently. Here, we derive a reduced model for the wave kinetics of the Schrödinger–Helmholtz equations in two spatial dimensions, which constitute a model for the dynamics of light in a spatially nonlocal, nonlinear optical medium. This model has the property of sharply localizing the frequencies of the interacting waves into two pairs, allowing for a rigorous and self-consistent derivation of what we term the semilocal approximation model (SLAM) of the WKE. Using the SLAM, we study the stationary spectra of Schrödinger–Helmholtz wave turbulence, and characterize the spectra that carry energy downscale, and waveaction upscale, in a forced-dissipated setup. The latter involves a nonlocal transfer of waveaction, in which waves at the forcing scale mediate the interactions of waves at every larger scale. This is in contrast to the energy cascade, which involves local scale-by-scale interactions, familiar from other wave turbulent systems and from classical hydrodynamical turbulence.
Funder
Simons Foundation
H2020 Marie Skłodowska-Curie Actions
Leverhulme Trust
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献