An effective semilocal model for wave turbulence in two-dimensional nonlinear optics

Author:

Skipp Jonathan1ORCID,Laurie Jason1ORCID,Nazarenko Sergey V.2ORCID

Affiliation:

1. Department of Mathematics, College of Engineering and Physical Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK

2. Université Côte d’Azur, CNRS-Institut de Physique de Nice,17 Rue Julien Lauprêtre, 06200 Nice, France

Abstract

The statistical evolution of ensembles of random, weakly interacting waves is governed by wave kinetic equations (WKEs). To simplify the analysis, one frequently works with reduced differential models of the wave kinetics. However, the conditions for deriving such reduced models are seldom justified self-consistently. Here, we derive a reduced model for the wave kinetics of the Schrödinger–Helmholtz equations in two spatial dimensions, which constitute a model for the dynamics of light in a spatially nonlocal, nonlinear optical medium. This model has the property of sharply localizing the frequencies of the interacting waves into two pairs, allowing for a rigorous and self-consistent derivation of what we term the semilocal approximation model (SLAM) of the WKE. Using the SLAM, we study the stationary spectra of Schrödinger–Helmholtz wave turbulence, and characterize the spectra that carry energy downscale, and waveaction upscale, in a forced-dissipated setup. The latter involves a nonlocal transfer of waveaction, in which waves at the forcing scale mediate the interactions of waves at every larger scale. This is in contrast to the energy cascade, which involves local scale-by-scale interactions, familiar from other wave turbulent systems and from classical hydrodynamical turbulence.

Funder

Simons Foundation

H2020 Marie Skłodowska-Curie Actions

Leverhulme Trust

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3