Bi-Lipschitz Mané projectors and finite-dimensional reduction for complex Ginzburg–Landau equation

Author:

Kostianko Anna12ORCID

Affiliation:

1. University of Surrey, Department of Mathematics, Guildford, Surrey GU2 7XH, UK

2. School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, People’s Republic of China

Abstract

We present a new method of establishing the finite-dimensionality of limit dynamics (in terms of bi-Lipschitz Mané projectors) for semilinear parabolic systems with cross diffusion terms and illustrate it on the model example of three-dimensional complex Ginzburg-Landau equation with periodic boundary conditions. The method combines the so-called spatial-averaging principle invented by Sell and Mallet–Paret with temporal averaging of rapid oscillations which come from cross-diffusion terms.

Funder

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smooth extensions for inertial manifolds of semilinear parabolic equations;Analysis & PDE;2024-03-06

2. Attractors. Then and now;Russian Mathematical Surveys;2023

3. Inertial manifolds for 3D complex Ginzburg-Landau equations with periodic boundary conditions;Indiana University Mathematics Journal;2023

4. Attractors. Then and now;Uspekhi Matematicheskikh Nauk;2023

5. Inertial Manifolds via Spatial Averaging Revisited;SIAM Journal on Mathematical Analysis;2022-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3