Affiliation:
1. The Alan Turing Institute, The British Library, London, UK
2. NATS, Fareham, UK
3. Department of Computer Science, University of Exeter, Exeter, UK
4. digiLab, Exeter, UK
Abstract
Ensuring vertical separation is a key means of maintaining safe separation between aircraft in congested airspace. Aircraft trajectories are modelled in the presence of significant epistemic uncertainty, leading to discrepancies between observed trajectories and the predictions of deterministic models, hampering the task of planning to ensure safe separation. In this paper, a probabilistic model is presented, for the purpose of emulating the trajectories of aircraft in climb and bounding the uncertainty of the predicted trajectory. A monotonic, functional representation exploits the spatio-temporal correlations in the radar observations. Through the use of Gaussian process emulators, features that parameterize the climb are mapped directly to functional outputs, providing a fast approximation, while ensuring that the resulting trajectory is monotonic. The model was applied as a probabilistic digital twin for aircraft in climb and baselined against the base of aircraft data, a deterministic model widely used in industry. When applied to an unseen test dataset, the probabilistic model was found to provide a mean prediction that was 20.56% more accurate, as measured by the mean absolute error, with data-driven credible intervals that were9.54% sharper.
Funder
Engineering and Physical Sciences Research Council
UK Research and Innovation
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献