Tailored acoustic metamaterials. Part I. Thin- and thick-walled Helmholtz resonator arrays

Author:

Smith Michael J. A.1ORCID,Abrahams I. David1ORCID

Affiliation:

1. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

Abstract

We present a novel multipole formulation for computing the band structures of two-dimensional arrays of cylindrical Helmholtz resonators. This formulation is derived by combining existing multipole methods for arrays of ideal cylinders with the method of matched asymptotic expansions. We construct asymptotically close representations for the dispersion equations of the first band surface, correcting and extending an established lowest-order (isotropic) result in the literature for thin-walled resonator arrays. The descriptions we obtain for the first band are accurate over a relatively broad frequency and Bloch vector range and not simply in the long-wavelength and low-frequency regime, as is the case in many classical treatments. Crucially, we are able to capture features of the first band, such as low-frequency anisotropy, over a broad range of filling fractions, wall thicknesses and aperture angles. In addition to describing the first band we use our formulation to compute the first band gap for both thin- and thick-walled resonators, and find that thicker resonator walls correspond to both a narrowing of the first band gap and an increase in the central band gap frequency.

Funder

Royal Society

EPSRC

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalized eigenfunction expansion and singularity expansion methods for two-dimensional acoustic time-domain wave scattering problems;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-09

2. Effective T-matrix of a cylinder filled with a random two-dimensional particulate;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-06

3. Effective properties of periodic plate-array metacylinders;Physical Review B;2023-12-14

4. A model to validate effective waves in random particulate media: spherical symmetry;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-11

5. Mechanical metamaterials;Reports on Progress in Physics;2023-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3