Challenges with managing insecticide resistance in agricultural pests, exemplisfied by the whitefly Bemisia tabaci

Author:

Denholm I.1,Cahill M.1,Dennehy T. J.2,Horowitz A. R.3

Affiliation:

1. Department of Biological and Ecological Chemistry, IACR–Rothamsted, Harpenden, Herts AL5 2JQ, UK

2. Department of Entomology, University of Arizona, Tucson, AZ 85721, USA

3. Department of Entomology, Institute of Plant Protection, Volcani Center, POBox 6, Bet Dagan 50250, Israel

Abstract

For many key agricultural pests, successful management of insecticide resistance depends not only on modifying the way that insecticides are deployed, but also on reducing the total number of treatments applied. Both approaches benefit from a knowledge of the biological characteristics of pests that promote or may retard the development of resistance. For the whitefly Bemisia tabaci (Gennadius), these factors include a haplodiploid breeding system that encourages the rapid selection and fixation of resistance genes, its breeding cycle on a succession of treated or untreated hosts, and its occurrence on and dispersal from high–value crops in greenhouses and glasshouses. These factors, in conjunction with often intensive insecticide use, have led to severe and widespread resistance that now affects several novel as well as conventional control agents. Resistance–management strategies implemented on cotton in Israel, and subsequently in south–western USA, have nonetheless so far succeeded in arresting the resistance treadmill in B. tabaci through a combination of increased chemical diversity, voluntary or mandatory restrictions on the use of key insecticides, and careful integration of chemical control with other pest–management options. In both countries, the most significant achievement has been a dramatic reduction in the number of insecticide treatments applied against whiteflies on cotton, increasing the prospect of sustained use of existing and future insecticides.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3