Decay of turbulence in the final period

Author:

Abstract

The final period of decay of a turbulent motion occurs when the effects of inertia forces are negligible. Under these conditions the instantaneous velocity distribution in the turbulence field may be solved as an initial value problem. It is shown that homogeneous turbulence tends to an asymptotic statistical state which is independent of the initial conditions. In this asymptotic state the energy of turbulence is proportional to t -5/2 and the longitudinal double-velocity correlation coefficient for two points distance r apart is e -r2/svt , where t is the time of decay. The asymptotic time-interval correlation coefficient is found to be different from unity for very large time intervals only, showing the aperiodic character of the motion. The whole field of motion comes gradually to rest, smaller eddies decaying more rapidly than larger eddies, and the above stable eddy distribution is established when only the largest eddies of the original turbulence remain. Relevant measurements have been made in the field of isotropic turbulence downstream from a grid of small mesh. The above energy decay and space-interval correlation relations are found to be valid at distances from the grid greater than 400-mesh lengths and at a mesh Reynolds number of 650. The duration of the transitional period, in which the energy decay law is changing from that appropriate to the initial period of decay to the above asymptotic law, increases very rapidly with R M . There is a brief discussion of the criterion for the existence of final period decay, although clarification must wait until the existence and termination of the initial period of decay are better understood.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference10 articles.

1. Quart;Batchelor G. K.;Applied Math.,1948

2. Proc. Roy;Batchelor G. K.;Soc. A,1947

3. Proc. Roy;Batchelor G. K.;Soc. A,1948

4. Proc. Roy;Karm;Soc. A,1938

5. Loitsiansky L. 1939 Cent. Aero and Hydro. Inst. ( . ; ) Rep. no. 440. (Translated as N .A .C .A . Tech. Memo. no. 1079.)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3