Evaluation and mechanism of ammonia nitrogen removal using sediments from a malodorous river

Author:

Chen Xing12,Jiang Xia12,Huang Wei12ORCID

Affiliation:

1. National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China

2. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China

Abstract

Malodorous rivers are among the major environmental problems of cities in developing countries. In addition to the unpleasant smell, the sediments of such rivers can act as a sink for pollutants. The excessive amount of ammonia nitrogen (NH 3 −N) in rivers is the main factor that causes the malodour. Therefore, a suitable method is necessary for sediment disposition and NH 3 −N removal in malodorous rivers. The sediment in a malodorous river (PS) in Beijing, China was selected and modified via calcination (PS-D), Na + doping (PS-Na) and calcination–Na + doping (PS-DNa). The NH 3 −N removal efficiency using the four sediment materials was evaluated, and results indicated that the NH 3 −N removal efficiency using the modified sediment materials could reach over 60%. PS-DNa achieved the highest NH 3 −N removal efficiency (90.04%). The kinetics study showed that the pseudo-second-order model could effectively describe the sorption kinetics and that the exterior activated site had the main function of P sorption. The results of the sorption isotherms indicated that the maximum sorption capacities of PS-Na, PS-D and PS-DNa were 0.343, 0.831 and 1.113 mg g −1 , respectively, and a high temperature was favourable to sorption. The calculated thermodynamic parameters suggested that sorption was a feasible or spontaneous (Δ G  < 0), entropy-driven (Δ S  > 0), and endothermic (Δ H  > 0) reaction.

Funder

the Major Science and Technology Program for Water Pollution Control and Treatment

project founded by China Postdoctoral Science Foundation

Natural Science Foundation of Beijing Municipality

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3