Comparing intervention measures in a model of a disease outbreak on a university campus

Author:

Best A.1ORCID,Singh P.1ORCID

Affiliation:

1. School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK

Abstract

A number of theoretical models have been developed in recent years modelling epidemic spread in educational settings such as universities, often as part of efforts to inform re-opening strategies during the COVID-19 pandemic. However, these studies have had differing conclusions as to the most effective non-pharmaceutical interventions. They also largely assumed permanent acquired immunity, meaning we have less understanding of how disease dynamics will play out when immunity wanes. Here, we complement these studies by developing and analysing a general stochastic simulation model of disease spread on a university campus where we allow immunity to wane, exploring the effectiveness of different interventions. We find that the two most effective interventions to limit the severity of a disease outbreak are reducing extra-household mixing and surveillance testing backed-up by a moderate isolation period. We find that contact tracing only has a limited effect, while reducing class sizes only has much effect if extra-household mixing is already low. We identify a range of measures that can not only limit an outbreak but prevent it entirely, and also comment on the variation in measures of severity that emerge from our stochastic simulations. We hope that our model may help in designing effective strategies for universities in future disease outbreaks.

Publisher

The Royal Society

Subject

Multidisciplinary

Reference30 articles.

1. Contributions to the mathematical theory of epidemics—1;Kermack WO;Proc. R. Soc. Lond. B,1927

2. Modelling that shaped the early COVID-19 pandemic response in the UK

3. Early dynamics of transmission and control of COVID-19: a mathematical modelling study

4. Ferguson N et al.. 2020 Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Technical report Imperial College London London UK.

5. Using a real-world network to model localized COVID-19 control strategies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3