Affiliation:
1. Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of TCM, Nanjing, People's Republic of China
2. Shimadzu Biomedical Research Laboratory, Shanghai, People's Republic of China
3. Nanjing Normal University, Nanjing, People's Republic of China
Abstract
A high-salt diet often leads to a local intrarenal increase in renal hypoxia and oxidative stress, which are responsible for an excess production of pathogenic substances. Here, Wistar Kyoto/spontaneous hypertensive (WKY/SHR) rats fed a high-salt diet developed severe proteinuria, resulting from pronounced renal inflammation, fibrosis and tubular epithelial cell apoptosis. All these were mainly non-pressure-related effects. Hsp90β, TGF-β, HIF-1α, TNF-α, IL-6 and MCP-1 were shown to be highly expressed in response to salt loading. Next, we found that Hsp90β might play the key role in non-pressure-related effects of salt loading through a series of cellular signalling events, including the NF-κB, p38 activation and Bcl-2 inactivation. Hsp90β was previously proven to regulate the upstream mediators in multiple cellular signalling cascades through stabilizing and maintaining their activities. In our study, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) or Hsp90β knockdown dramatically alleviated the high-salt-diet-induced proteinuria and renal damage without altering blood pressure significantly, when it reversed activations of NF-κB, mTOR and p38 signalling cascades. Meanwhile, Co-IP results demonstrated that Hsp90β could interact with and stabilize TAK1, AMPKα, IKKα/β, HIF-1α and Raptor, whereas Hsp90β inhibition disrupted this process. In addition, Hsp90β inhibition-mediated renal improvements also accompanied the reduction of renal oxidative stress. In conclusion, salt loading indeed exhibited non-pressure-related impacts on proteinuria and renal dysfunction in WKY/SHR rats. Hsp90β inhibition caused the destabilization of upstream mediators in various pathogenic signalling events, thereby effectively ameliorating this nephropathy owing to renal hypoxia and oxidative stress.
Funder
Research Fund for Doctoral Program of Higher Education of China
National Nature Science Foundation of China
Natural Science Research Program of Jiangsu Higher Education Institution of China
Subject
General Biochemistry, Genetics and Molecular Biology,Immunology,General Neuroscience
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献