Large vapour cloud explosions, with particular reference to that at Buncefield

Author:

Bradley D.1,Chamberlain G. A.2,Drysdale D. D.3

Affiliation:

1. School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK

2. Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK

3. School of Engineering, University of Edinburgh, King's Buildings, Edinburgh EH9 3JL, UK

Abstract

This paper first briefly surveys the energy releases in some major accidents. It then examines the analyses of the explosion at the Buncefield fuel storage site in the UK, one of the most intense accidental explosions in recent times. This followed the release of approximately 300 tonnes of winter-grade gasoline, when a 15 m high storage tank was overfilled for about 40 min before ignition of the resulting flammable mixture. The ensuing explosion was of a severity that had not been identified previously in a major hazard assessment of this type of facility. It was therefore imperative to investigate the event thoroughly and develop an understanding of the underlying mechanisms to inform future prevention, mitigation and land-use planning issues. The investigation of the incident was overseen by the Buncefield Major Incident Investigation Board. A separate Explosion Mechanism Advisory Group examined the evidence and reported on the severity of the explosion. It concluded that additional work was necessary and recommended that a two-stage project be initiated, phase 1 of which has been completed. The analyses of the damage and the derivation of explosion over-pressures are described. Possible explosion mechanisms and the evidence for them at Buncefield are discussed, in the light of other major incidents. Mechanisms that are reviewed include high-speed turbulent combustion, quasi-detonations, fully developed detonations, the generation of fireballs, flame instabilites, radiative heat transfer and aspects of two-phase burning. Of particular importance is the acceleration of turbulent flames along the line of trees and hedgerows. A number of conclusions are drawn and suggestions made for further research.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference38 articles.

1. Large-eddy simulation of the plume generated by the fire at the Buncefield oil depot in December 2005

2. Observations of the plume generated by the December 2005 oil depot explosions and prolonged fire at Buncefield (Hertfordshire, UK) and associated atmospheric changes

3. Buncefield Major Incident Investigation Board. 2008 The Buncefield incident 11 December 2005 The final report of the Major Incident Investigation Board. vols 1 and 2 See http://www.buncefieldinvestigation.gov.uk.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3