Understanding hydraulic fracturing: a multi-scale problem

Author:

Hyman J. D.,Jiménez-Martínez J.,Viswanathan H. S.,Carey J. W.,Porter M. L.,Rougier E.,Karra S.,Kang Q.,Frash L.,Chen L.,Lei Z.,O’Malley D.,Makedonska N.

Abstract

Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO 2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages. This article is part of the themed issue ‘Energy and the subsurface’.

Funder

LANL's DR research programme

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference66 articles.

1. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2

2. Hydraulic fracturing fluid migration in the subsurface: A review and expanded modeling results

3. Methods of estimating shale gas resources – Comparison, evaluation and implications

4. Viswanathan HS et al. 2015 Integrated experimental and computational study of hydraulic fracturing and the use of alternative fracking fluids. In 49th US Rock Mechanics/Geomechanics Symp . Alexandria VA: American Rock Mechanics Association.

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3