Formation and dynamics of magma reservoirs

Author:

Sparks R. S. J.1,Annen C.12,Blundy J. D.1,Cashman K. V.1,Rust A. C.1,Jackson M. D.3

Affiliation:

1. School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK

2. University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France

3. Department of Earth Science and Engineering, Imperial College, London SW7 2AZ, UK

Abstract

The emerging concept of a magma reservoir is one in which regions containing melt extend from the source of magma generation to the surface. The reservoir may contain regions of very low fraction intergranular melt, partially molten rock (mush) and melt lenses (or magma chambers) containing high melt fraction eruptible magma, as well as pockets of exsolved magmatic fluids. The various parts of the system may be separated by a sub-solidus rock or be connected and continuous. Magma reservoirs and their wall rocks span a vast array of rheological properties, covering as much as 25 orders of magnitude from high viscosity, sub-solidus crustal rocks to magmatic fluids. Time scales of processes within magma reservoirs range from very slow melt and fluid segregation within mush and magma chambers and deformation of surrounding host rocks to very rapid development of magma and fluid instability, transport and eruption. Developing a comprehensive model of these systems is a grand challenge that will require close collaboration between modellers, geophysicists, geochemists, geologists, volcanologists and petrologists. This article is part of the Theo Murphy meeting issue ‘Magma reservoir architecture and dynamics’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference160 articles.

1. The nature of volcanic action;Daly RA;Proc. Am. Acad. Arts Sci.,2004

2. Geological investigations in East Greenland, Part III. The petrology of the Skaergaard intrusion, Kangerdlugssuaq, East Greenland;Wager LR;Med. Greenland,1939

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3