Affiliation:
1. Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706, USA
Abstract
We derive the asymptotic winding law for a Brownian particle in the plane subjected to a tangential drift due to a point vortex. For winding around a point, the normalized winding angle converges to an inverse Gamma distribution. For winding around a disc, the angle converges to a distribution given by an elliptic theta function. For winding in an annulus, the winding angle is asymptotically Gaussian with a linear drift term. We validate our results with numerical simulations.
This article is part of the theme issue ‘Topological and geometrical aspects of mass and vortex dynamics’.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献