Early accretion of water and volatile elements to the inner Solar System: evidence from angrites

Author:

Sarafian Adam R.123ORCID,Hauri Erik H.4,McCubbin Francis M.5,Lapen Thomas J.6,Berger Eve L.7,Nielsen Sune G.23,Marschall Horst R.28,Gaetani Glenn A.2,Righter Kevin5,Sarafian Emily12

Affiliation:

1. Massachusetts Institute of Technology – Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge, MA 02139, USA

2. Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

3. NIRVANA Laboratories, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

4. Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA

5. NASA JSC, Mailcode XI2, 2101 NASA Parkway, Houston, TX 77058, USA

6. Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA

7. GeoControl Systems Inc., Jacobs JETS Contract, NASA JSC, Houston, TX, USA

8. Goethe Universität Frankfurt, Institut für Geowissenschaften, Altenhöferallee 1, 60438 Frankfurt am Main, Germany

Abstract

Inner Solar System bodies are depleted in volatile elements relative to chondrite meteorites, yet the source(s) and mechanism(s) of volatile-element depletion and/or enrichment are poorly constrained. The timing, mechanisms and quantities of volatile elements present in the early inner Solar System have vast implications for diverse processes, from planetary differentiation to the emergence of life. We report major, trace and volatile-element contents of a glass bead derived from the D'Orbigny angrite, the hydrogen isotopic composition of this glass bead and that of coexisting olivine and silicophosphates, and the 207 Pb– 206 Pb age of the silicophosphates, 4568 ± 20 Ma. We use volatile saturation models to demonstrate that the angrite parent body must have been a major body in the early inner Solar System. We further show via mixing calculations that all inner Solar System bodies accreted volatile elements with carbonaceous chondrite H and N isotope signatures extremely early in Solar System history. Only a small portion (if any) of comets and gaseous nebular H species contributed to the volatile content of the inner Solar System bodies. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.

Funder

NASA Jenkins graduate fellowship

WHOI Ocean Venture Fund

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evidence against water delivery by impacts within 10 million years of planetesimal formation;Earth and Planetary Science Letters;2024-09

2. The H-poor nature of incompletely melted planetesimals: The view from acapulcoites and lodranites;Geochimica et Cosmochimica Acta;2024-04

3. Devolatilization of extrasolar planetesimals by 60Fe and 26Al heating;Monthly Notices of the Royal Astronomical Society;2024-02-14

4. Fate of an Earth‐Like Water Inventory on Mars;Journal of Geophysical Research: Planets;2024-02

5. Endogenous Lunar Volatiles;Reviews in Mineralogy and Geochemistry;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3