Numerical studies of nitric oxide formation in nanosecond-pulsed discharge-stabilized flames of premixed methane/air

Author:

Bak Moon Soo12,Cappelli Mark A.2

Affiliation:

1. School of Mechanical Engineering, Sungkyunkwan University, Chun-chun-dong 300, Jangan-gu, Suwon, Gyunggi-do 440-746, South Korea

2. Department of Mechanical Engineering, Stanford University, Stanford, CA 94305–3032, USA

Abstract

A simulation is developed to investigate the kinetics of nitric oxide (NO) formation in premixed methane/air combustion stabilized by nanosecond-pulsed discharges. The simulation consists of two connected parts. The first part calculates the kinetics within the discharge while considering both plasma/combustion reactions and species diffusion, advection and thermal conduction to the surrounding flow. The second part calculates the kinetics of the overall flow after mixing the discharge flow with the surrounding flow to account for the effect that the discharge has on the overall kinetics. The simulation reveals that the discharge produces a significant amount of atomic oxygen (O) as a result of the high discharge temperature and dissociative quenching of excited state nitrogen by molecular oxygen. This atomic oxygen subsequently produces hydroxyl (OH) radicals. The fractions of these O and OH then undergo Zel’dovich reactions and are found to contribute to as much as 73% of the total NO that is produced. The post-discharge simulation shows that the NO survives within the flow once produced.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3