Affiliation:
1. Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
Abstract
Inorganic precipitation reactions are known to self-organize a variety of macroscopic structures, including hollow tubes. We discuss recent advances in this field with an emphasis on experiments similar to ‘silica gardens’. These reactions involve metal salts and sodium silicate solution. Reactions triggered from reagent-loaded microbeads can produce tubes with inner radii of down to 3 μm. Distinct wall morphologies are reported. For pump-driven injection, three qualitatively different growth regimes exist. In one of these regimes, tubes assemble around a buoyant jet of reactant solution, which allows the quantitative prediction of the tube radius. Additional topics include relaxation oscillations and the templating of tube growth with pinned gas bubble and mechanical devices. The tube materials and their nano-to-micro architectures are discussed for the cases of silica/Cu(OH)
2
and silica/Zn(OH)
2
/ZnO tubes. The latter case shows photocatalytic activity and photoluminescence.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献