Electro-osmotic flow enhancement in carbon nanotube membranes

Author:

Mattia Davide1,Leese Hannah1,Calabrò Francesco2ORCID

Affiliation:

1. Department of Chemical Engineering, University of Bath, Bath BA27AY, UK

2. DIEI, Università di Cassino, Cassino 03043, Italy

Abstract

In this work, experimental evidence of the presence of electro-osmotic flow (EOF) in carbon nanotube membranes with diameters close to or in the region of electrical double layer overlap is presented for two different electrolytes for the first time. No EOF in this region should be present according to the simplified theoretical framework commonly used for EOF in micrometre-sized channels. The simplifying assumptions concern primarily the electrolyte charge density structure, based on the Poisson–Boltzmann (P-B) equation. Here, a numerical analysis of the solutions for the simplified case and for the nonlinear and the linearized P-B equations is compared with experimental data. Results show that the simplified solution produces a significant deviation from experimental data, whereas the linearized solution of the P-B equation can be adopted with little error compared with the full P-B case. This work opens the way to using electro-osmotic pumping in a wide range of applications, from membrane-based ultrafiltration and nanofiltration (as a more efficient alternative to mechanical pumping at the nanoscale) to further miniaturization of lab-on-a-chip devices at the nanoscale for in vivo implantation.

Funder

EPSRC

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3