Affiliation:
1. Linné Flow Centre, Department of Mechanics, KTH, 100 44, Stockholm, Sweden
Abstract
This review gives an account of recent research efforts to use feedback control for the delay of laminar–turbulent transition in wall-bounded shear flows. The emphasis is on reducing the growth of small-amplitude disturbances in the boundary layer using numerical simulations and a linear control approach. Starting with the application of classical control theory to two-dimensional perturbations developing in spatially invariant flows, flow control based on control theory has progressed towards more realistic three-dimensional, spatially inhomogeneous flow configurations with localized sensing/actuation. The development of low-dimensional models of the Navier–Stokes equations has played a key role in this progress. Moreover, shortcomings and future challenges, as well as recent experimental advances in this multi-disciplinary field, are discussed.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献