Resolving the electrode fall spaces of electric arcs

Author:

Abstract

The measurement of the cathode and anode fall in potential in arc discharges between metal electrodes in gases at atmospheric pressure has presented considerable difficulties because of the small extent of the fall spaces. For the same reason there are no satisfactory observations of the thickness of these spaces. Early mirror oscillograms of te voltage of arcs of decreasing length indicated the existence of a minimum voltage, necessary to maintain an arc, and its value was taken to be equal to the sum of cathode and anode falls in potential. Attempts to determine these individually either by using different substances for the electrodes or by a moving probe have met with only limited success. In order to separate the electrode falls in a single experiment, a high speed cathode ray oscilloscope is used. The arc having been first established, its anode is driven towards the stationary cathode while the variation of arc voltage with time is recorded as the arc length is reduced to zero. Oscillograms show two discontinuities in the voltage trace which correspond to the anode and cathode falls. From the duration of the steps, and the known velocity of approach of the anode, approximate values of the thickness of the fall spaces are determined. Arcs between electrodes of tin, copper, graphite, and tungsten are investigated in argon, nitrogen and air, mostly at atmospheric, but also at reduced, gas pressures. At one atmosphere the cathode falls observed are between 11 and 15 V for currents of 10 A and above, whereas the anode falls lie in the range of 2 to 5 V. Fluctuations in arc voltage are found to originate mainly at the cathode. The cathode fall for tin in argon is constant below 30 A but slowly increasing at larger currents. The anode fall for graphite is independent of current up to 60 A. The thickness of the anode fall space in metal vapour arcs is of the order 10 -2 to 10 -4 cm depending on the gas. The thickness of the cathode fall space does not exceed 4 x 10 -6 cm, a value consistent with the excitation theory of vapour arcs.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference26 articles.

1. A y r to n H . 1910 Theelectric arc. L o n d o n : T h e E le c tric P u b lish in g Co.

2. B e rte le H . 1952 NiederdrucTc-Stromrichter Ventile. V ie n n a : S p rin g e r-V e rla g .

3. B e z W . & H o c k e r K . H . 1954 Z . N atu rf. 9a 72.

4. B lo c h M . J . & F in k e In b u rg W . 1953 Z . N aturf. 8 a 758.

5. C o b in e J . D . 1962 O. E . Res. Rep. n o . 61.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3