Stereoscopic subsystems for position in depth and for motion in depth

Author:

Abstract

We describe psychophysical evidence that the human visual system contains information-processing channels for motion in depth in addition to those for position in depth. These motion-in-depth channels include some that are selectively sensitive to the relative velocities of the left and right retinal images. We propose that the visual pathway contains stereoscopic (cyclopean) motion filters that respond to only a narrow range of the directions of motion in depth. Turning to the single-neuron level we report that, in addition to neurons tuned to position in depth, cat visual cortex contains neurons that emphasize information about the direction of motion at the expense of positional information. We describe psychophysical evidence for the existence of channels that are sensitive to changing size, and are separate from the channels both for motion and for flicker. These changing-size channels respond independently of whether the stimulus is a bright square on a dark ground or a dark square on a bright ground. At the physiological level we report single neurons in cat visual cortex that respond selectively to increasing or to decreasing size independently of the sign of stimulus contrast. Adaptation to a changing-size stimulus produces two separable after-effects: an illusion of changing size, and an illusion of motion in depth. These after-effects have different decay time constants. We propose a psychophysical model in which changing-size filters feed a motion-in-depth stage, and suppose that the motion-in-depth after-effect is due to activity at the motion-in-depth stage, while the changing-size after-effect is due to activity at the changing-size and more peripheral stages. The motion-in-depth after-effect can be cancelled either by a changing-size test stimulus or by relative motion of the left and right retinal images. Opposition of these two cues can also cancel the impression of motion in depth produced by the adapting stimulus. These findings link the stereoscopic (cyclopean) motion filters and the changing-size filters : both feed the same motion-in-depth stage.

Publisher

The Royal Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3