Suppression of galloping oscillations by injecting a high-frequency excitation

Author:

Alhadidi Ali H.1ORCID,Khazaaleh Shadi2,Daqaq Mohammed F.2ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Jordan, Amman 11942, Jordan

2. Engineering Division, New York University, Abu Dhabi

Abstract

Galloping is an aeroelastic instability which incites oscillatory motion of elastic structures when subjected to an incident flow. Because galloping is often detrimental to the integrity of the structure, many research studies have focused on investigating methodologies to suppress these oscillations. These include using passive energy sinks, altering the surface characteristics of the structure, actively changing the shape of the boundary layer through momentum injection and using feedback control algorithms. In this paper, we demonstrate that the critical flow speed at which galloping is activated can be substantially increased by subjecting the galloping structure to a high-frequency non-resonant base excitation. The average effect of the high-frequency excitation is to produce additional linear damping in the slow response which serves to suppress the galloping instability. We study this approach theoretically and demonstrate its effectiveness using experimental tests performed on a galloping cantilevered structure. It is demonstrated that the galloping speed can be tripled in some experimental cases. This article is part of the theme issue ‘Vibrational and stochastic resonance in driven nonlinear systems (part 2)’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3