The Ogden and the extended tube model as backbone in describing electroactive polymers: advancements in modelling nonlinear behaviour and fracture

Author:

Kaliske M.1ORCID,Storm J.1ORCID,Kanan A.1,Klausler W.1

Affiliation:

1. Institute for Structural Analysis, Technische Universität Dresden, Dresden, Germany

Abstract

Hyperelastic constitutive relations form the basis of advanced models for novel materials. Such elastic deformation potentials are the backbone for complex material formulations at elastic and inelastic deformations, especially when embedded into powerful frameworks like generalized standard materials, as well as multiphysical and multiscale formulations. With the focus on electroactive polymers, the article at hand demonstrates the derivation of a variational, rate-dependent electromechanical model for quasi-incompressible polymers and the derivation of an electromechanical model for regularized fracture mechanics by means of the phase-field method. Starting at the prominent Ogden and the extended tube model, some developments from the last decades are revisited and presented via the principle of virtual power, for instance, the established mixed element formulation, nonlinear viscoelasticity and electromechanical coupling. An electromechanically fully coupled representative crack element is used to derive a novel phase-field model for fracture. A key property of the proposed model is the ability to describe the electrical free-space behaviour inside the crack gap, which is demonstrated by adopting three common crack-face conditions. This article is part of the theme issue ‘The Ogden model of rubber mechanics: Fifty years of impact on nonlinear elasticity’.

Funder

Deutsche Forschungsgemeinschaft

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3