The broad edge of synchronization: Griffiths effects and collective phenomena in brain networks

Author:

Buendía Victor12ORCID,Villegas Pablo3ORCID,Burioni Raffaella45ORCID,Muñoz Miguel A.6ORCID

Affiliation:

1. Max Planck Institute for Biological Cybernetics, Tübingen, Germany

2. Department of Computer Science, University of Tübingen, Tübingen, Germany

3. IMT Institute for Advanced Studies, Piazza San Ponziano 6 55100 Lucca, Italy

4. Dipartimento di Matematica, Fisica e Informatica, Università di Parma, via G.P. Usberti, 7/A - 43124, Parma, Italy

5. INFN, Gruppo Collegato di Parma, via G.P. Usberti, 7/A - 43124, Parma, Italy

6. Departamento de Electromagnetismo y Física de la Materia e Instituto Carlos I de Física Teórica y Computacional. Universidad de Granada, E-18071 Granada, Spain

Abstract

Many of the amazing functional capabilities of the brain are collective properties stemming from the interactions of large sets of individual neurons. In particular, the most salient collective phenomena in brain activity are oscillations, which require the synchronous activation of many neurons. Here, we analyse parsimonious dynamical models of neural synchronization running on top of synthetic networks that capture essential aspects of the actual brain anatomical connectivity such as a hierarchical-modular and core-periphery structure. These models reveal the emergence of complex collective states with intermediate and flexible levels of synchronization, halfway in the synchronous–asynchronous spectrum. These states are best described as broad Griffiths-like phases, i.e. an extension of standard critical points that emerge in structurally heterogeneous systems. We analyse different routes (bifurcations) to synchronization and stress the relevance of ‘hybrid-type transitions’ to generate rich dynamical patterns. Overall, our results illustrate the complex interplay between structure and dynamics, underlining key aspects leading to rich collective states needed to sustain brain functionality. This article is part of the theme issue ‘Emergent phenomena in complex physical and socio-technical systems: from cells to societies’.

Funder

Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía

Ministerio de Ciencia Tecnología y Telecomunicaciones

Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference91 articles.

1. Kandel E, Schwartz J, Jessel T. 2000 Principles of neural science. New York, NY: McGraw-Hill.

2. Networks of the Brain

3. Fornito A, Zalesky A, Bullmore E. 2016 Fundamentals of brain network analysis. New York, NY: Academic Press.

4. Dayan P, Abbott LF. 2006 Theoretical neuroscience: computational and mathematical modeling of neural systems. Cambridge, UK: MIT Press.

5. Invariant visual representation by single neurons in the human brain

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3