Modelling attenuation of irregular wave fields by artificial ice floes in the laboratory

Author:

Toffoli A.1ORCID,Pitt J. P. A.2,Alberello A.3ORCID,Bennetts L. G.2ORCID

Affiliation:

1. Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia

2. School of Mathematical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia

3. School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK

Abstract

A summary is given on the utility of laboratory experiments for gaining understanding of wave attenuation in the marginal ice zone, as a complement to field observations, theory and numerical models. It is noted that most results to date are for regular incident waves, which, combined with the highly nonlinear wave–floe interaction phenomena observed and measured during experimental tests, implies that the attenuation of regular waves cannot necessarily be used to infer the attenuation of irregular waves. Two experiments are revisited in which irregular wave tests were conducted but not previously reported, one involving a single floe and the other a large number of floes, and the transmission coefficients for the irregular and regular wave tests are compared. The transmission spectra derived from the irregular wave tests agree with the regular wave data but are overpredicted by linear models due to nonlinear dissipative processes, regardless of floe configuration. This article is part of the theme issue ‘Theory, modelling and observations of marginal ice zone dynamics: multidisciplinary perspectives and outlooks’.

Funder

Australian Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3