Modelling of seismic assessment for large geological systems

Author:

Movchan Igor B.1,Yakovleva Alexandra A.1ORCID,Frid Vladimir2ORCID,Movchan Alexander B.3ORCID,Shaygallyamova Zilya I.1

Affiliation:

1. St Petersburg Mining University, St Petersburg, Russia

2. Sami Shamoon College of Engineering, Ashdod, Israel

3. University of Liverpool, Liverpool, UK

Abstract

A new approach to seismic analysis has been introduced and demonstrated for a sequence of recent seismic events recorded in the Blackpool region of Lancashire, UK. The seismic activity, induced by an industrial hydraulic fracturing at a depth exceeding 2 km, had the extent of registered surface elastic vibrations reaching a distance exceeding 15 km. The analysis is based on the study of elastic fields, three-dimensional extrapolations of the landscape and the novel reconstruction of a three-dimensional digital model of seismic map boundaries and vertical profiles. The verification of the proposed approach is carried out via the comparison with published data of the Blackpool seismic events, combined with the new spectral analysis linked to the identified regions of seismic activity. The latter was accompanied by a finite-element simulation of vibrations for an elastic layer of variable thickness, approximating the test region. The analysis and numerical modelling have demonstrated consistency with the dynamic nature of structural stratification of the geological systems, and in addition, the predictive nature of the modelling work was demonstrated by the comparison of the model eigenmodes with the published parameters of registered earthquakes in the Blackpool area. This article is part of the theme issue ‘Wave generation and transmission in multi-scale complex media and structured metamaterials (part 1)’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3