XII. Radiation in the solar system: its effect on temperature and its pressure on small bodies

Author:

Abstract

When a surface is a full radiator and absorber its temperature can be determined at once by the fourth-power law if we know the rate at which it is radiating energy. If it is radiating what it receives from the sun, then a knowledge of the solar constant enables us to find the temperature. We can thus make estimates of the highest temperature which a surface can reach when it is only receiving heat from the sun. We can also make more or less approximate estimates of the temperatures of the planetary surfaces by assuming conditions under which the radiation takes place, and we can determine, fairly exactly, the temperatures of very small bodies in interplanetary space. These determinations require a knowledge of the constant of radiation and of either the solar constant or the effective temperature of the sun, either of which, as is well known, can be found from the other by means of the radiation constant. It will be convenient to give here the values of these quantities before proceeding to apply them to our special problems.

Publisher

The Royal Society

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 130 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Theory and Observation of Winds from Star-Forming Galaxies;Annual Review of Astronomy and Astrophysics;2024-09-13

2. Relativistic damping of laser-beam-driven light sails;Physical Review Applied;2024-06-13

3. Particle motion in a rotating dust spacetime;Physical Review D;2024-06-04

4. Lifetime of cm-sized zodiacal dust from the physical and dynamical evolution of meteoroid streams;Icarus;2024-06

5. Transport of dust across the Solar System: Constraints on the spatial origin of individual micrometeorites from cosmic-ray exposure;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3