Spatially explicit predictions of food web structure from regional-level data

Author:

Dansereau Gabriel12ORCID,Barros Ceres3ORCID,Poisot Timothée12ORCID

Affiliation:

1. Département de Sciences Biologiques, Université de Montréal , Montreal, Quebec H2V 0B3, Canada

2. Quebec Centre for Biodiversity Science , Montréal, Quebec H3A 1B1, Canada

3. Department of Forest Resources Management, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada

Abstract

Knowledge about how ecological networks vary across global scales is currently limited given the complexity of acquiring repeated spatial data for species interactions. Yet, recent developments in metawebs highlight efficient ways to first document possible interactions within regional species pools. Downscaling metawebs towards local network predictions is a promising approach to using the current data to investigate the variation of networks across space. However, issues remain in how to represent the spatial variability and uncertainty of species interactions, especially for large-scale food webs. Here, we present a probabilistic framework to downscale a metaweb based on the Canadian mammal metaweb and species occurrences from global databases. We investigated how our approach can be used to represent the variability of networks and communities between ecoregions in Canada. Species richness and interactions followed a similar latitudinal gradient across ecoregions but simultaneously identified contrasting diversity hotspots. Network motifs revealed additional areas of variation in network structure compared with species richness and number of links. Our method offers the potential to bring global predictions down to a more actionable local scale, and increases the diversity of ecological networks that can be projected in space. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.

Funder

Natural Sciences and Engineering Research Council of Canada

Wellcome Trust

Fonds de recherche du Québec – Nature et technologies

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3