From coral reefs to Joshua trees: What ecological interactions teach us about the adaptive capacity of biodiversity in the Anthropocene

Author:

Lagerstrom Katherine M.1ORCID,Vance Summer1,Cornwell Brendan H.2,Ruffley Megan3,Bellagio Tatiana13,Exposito-Alonso Moi134,Palumbi Stephen R.2,Hadly Elizabeth A.156

Affiliation:

1. Department of Biology, Stanford University, Stanford, CA 94305, USA

2. Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA

3. Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA

4. Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, USA

5. Stanford Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA

6. Center for Innovation in Global Health, Stanford University, Stanford, CA 94305, USA

Abstract

The pervasive loss of biodiversity in the Anthropocene necessitates rapid assessments of ecosystems to understand how they will respond to anthropogenic environmental change. Many studies have sought to describe the adaptive capacity (AC) of individual species, a measure that encompasses a species’ ability to respond and adapt to change. Only those adaptive mechanisms that can be used over the next few decades (e.g. via novel interactions, behavioural changes, hybridization, migration, etc.) are relevant to the timescale set by the rapid changes of the Anthropocene. The impacts of species loss cascade through ecosystems, yet few studies integrate the capacity of ecological networks to adapt to change with the ACs of its species. Here, we discuss three ecosystems and how their ecological networks impact the AC of species and vice versa. A more holistic perspective that considers the AC of species with respect to their ecological interactions and functions will provide more predictive power and a deeper understanding of what factors are most important to a species’ survival. We contend that the AC of a species, combined with its role in ecosystem function and stability, must guide decisions in assigning ‘risk’ and triaging biodiversity loss in the Anthropocene. This article is part of the theme issue ‘Ecological complexity and the biosphere: the next 30 years’.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3