Randomness in the choice of neighbours promotes cohesion in mobile animal groups

Author:

Jadhav Vivek1ORCID,Guttal Vishwesha1ORCID,Masila Danny Raj2ORCID

Affiliation:

1. Center for Ecological Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India

2. Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India

Abstract

Classic computational models of collective motion suggest that simple local averaging rules can promote many observed group-level patterns. Recent studies, however, suggest that rules simpler than local averaging may be at play in real organisms; for example, fish stochastically align towards only one randomly chosen neighbour and yet the schools are highly polarized. Here, we ask—how do organisms maintain group cohesion? Using a spatially explicit model, inspired from empirical investigations, we show that group cohesion can be achieved in finite groups even when organisms randomly choose only one neighbour to interact with. Cohesion is maintained even in the absence of local averaging that requires interactions with many neighbours. Furthermore, we show that choosing a neighbour randomly is a better way to achieve cohesion than interacting with just its closest neighbour. To understand how cohesion emerges from these random pairwise interactions, we turn to a graph-theoretic analysis of the underlying dynamic interaction networks. We find that randomness in choosing a neighbour gives rise to well-connected networks that essentially cause the groups to stay cohesive. We compare our findings with the canonical averaging models (analogous to the Vicsek model). In summary, we argue that randomness in the choice of interacting neighbours plays a crucial role in achieving cohesion.

Funder

DBT-IISc Partnership programme

DST FIST

Ministry of Human Resource Development

Department of Science and Technology, Ministry of Science and Technology, India

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3