The line contact problem of elastohydrodynamic lubrication - I. Asymptotic structure for low speeds

Author:

Abstract

This paper reports the first formal asymptotic solution to the line contact problem of elastohydrodynamic lubrication (EHL), a fundamental problem describing the elastic deformation of lubricated rolling elements such as roller bearings, gear teeth and other contacts of similar geometry. The asymptotic régime considered is that of small λ , a dimensionless parameter proportional to rolling speed, viscosity and the elastic modulus. The solution is shown to possess four regions: a zone where the lubricating film is both thin and slowly narrowing and which is closely related to the contact area that occurs in the absence of lubricant, an upstream inlet zone of low pressure, and two thin layers on either side of the contact zone. The solutions in the first two just-mentioned zones are given by simple analytical expressions. The solutions in the two thin layers are obtained from two universal functions obtained by Bissett & Spence ( Proc. R. Soc. Lond . A 424, 409 (1989)). Although these two functions, related to the local film thickness, are obtained by numerical techniques by Bissett & Spence, it should be emphasized that all cases in the asymptotic régime considered are hereby solved definitively without recourse to further computation. Although some features of this structure have been suggested by other solution approaches, generally, these are numerical or ad hoc approximations. See the texts by Johnson ( Contact Mechanics , pp. 328 (1985)) and Dowson & Higginson ( Elasto-hydrodynamic lubrication (1977)), this work provides a formal mathematical basis for understanding most of the principal features of EHL. The solution provides a simple formula for minimum film thickness and displays the sharp narrowing of the lubricating film in the thin layer near the exit. In the basic asymptotic solution provided here, the dimensionless pressure-viscosity coefficient, α , is assumed to be O (1), and in this parameter régime, no pressure spike will occur. By comparing with the work of Hooke ( J. mech. Engng Sci . 19(4), 149 (1977)), we can show that an incipient pressure spike occurs when α becomes as large as O ( λ -1/5 ). However, asymptotic solutions in this latter parameter régime require new numerical solutions for each case of interest and are not pursued here.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference21 articles.

1. The elasto-hydrodynamic lubrication of rollers

2. Proc. Instn. mech;Archard J. F.;Engrs,1986

3. Bissett E. J. & Glander D. W. 1988 J.Tribology (Trans.

4. The line contact problem of elastohydrodynamic lubrication - II. Numerical solutions of the integrodifferential equations in the transition and exit layers

5. J;Blok H.;Inst. Petrol.,1952

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3