Bounds on the conductivity of a random array of cylinders

Author:

Abstract

We consider the problem of determining rigorous third-order and fourth-order bounds on the effective conductivity σ e of a composite material composed of aligned, infinitely long, equisized, rigid, circular cylinders of conductivity σ 2 randomly distributed throughout a matrix of conductivity σ 1 . Both bounds involve the microstructural parameter ξ 2 which is an integral that depends upon S 3 , the three-point probability function of the composite (G. W. Milton, J. Mech. Phys. Solids 30, 177-191 (1982)). The key multidimensional integral ξ 2 is greatly simplified by expanding the orientation-dependent terms of its integrand in Chebyshev polynomials and using the orthogonality properties of this basis set. The resulting simplified expression is computed for an equilibrium distribution of rigid cylinders at selected ϕ 2 (cylinder volume fraction) values in the range 0 ≼ ϕ 2 ≼ 0.65. The physical significance of the parameter ξ 2 for general microstructures is briefly discussed. For a wide range of ϕ 2 and α = σ 21 , the third-order bounds significantly improve upon second-order bounds which only incorporate volume fraction information; the fourth-order bounds, in turn, are always more restrictive than the third-order bounds. The fourth-order bounds on σ e are found to be sharp enough to yield good estimates of σ e for a wide range of ϕ 2 , even when the phase conductivities differ by as much as two orders of magnitude. When the cylinders are perfectly conducting ( α = ∞), moreover, the fourth-order lower bound on σ e provides an excellent estimate of this quantity for the entire volume-fraction range studied here, i. e. up to a volume fraction of 65%.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference23 articles.

1. Abramowitz M. & Stegun I. A. 1964 Handbook of mathematical functions. Washington D.C.: National Bureau of Standards.

2. Beasley J. D. & Torquato S. 1986 J. appl.Phys. 60 3576-3581.

3. Beran M. & Silnutzer N. 1971 J. composite Mater. 5 246-249.

4. Brown W. F. 1955 J- ehem.Phys. 23 1514-1517.

5. Random sequential adsorption

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3