Cell communication by periodic cyclic-AMP pulses

Author:

Abstract

At the surface of aggregating cells of the slime mould, Dictyostelium discoideum , two different sites interacting with extracellular cAMP are detectable: binding sites and cyclic-nucleotide phosphodiesterase. Both sites are developmentally regulated. An adequate stimulus for the chemoreceptor system in D. discoideum is the change of cAMP concentration in time, rather than concentration per se : long-term binding of cAMP causes only a short-term response. The system is, consequently, adapted to the recognition of pulses rather than to steady-state concentrations of cAMP. The cells are, nevertheless, able to sense stationary spatial gradients and to respond to them by chemotactic orientation. The possibility is discussed that they do so by transforming spatial concentration changes into temporal ones, using extending pseudopods as sensors. The cAMP recognition system is part of a molecular network involved in the generation of spatio-temporal patterns of cellular activities. This system controls the periodic formation of chemotactic signals and their propagation from cell to cell. The phosphodiesterase limits the duration of the cAMP pulses and thus sharply separates the periods of signalling; the binding sites at the cell surface are supposed to be the chemoreceptors. The control of cellular activities via cAMP receptors can be studied with biochemical techniques with cell suspensions in which spatial inhomogeneities are suppressed by intense stirring, whereas the temporal aspect of the spatiotemporal pattern is preserved. Under these conditions it can be shown that the extracellular cAMP concentration changes periodically, and that the phase of the cellular oscillator can be shifted by external pulses of cAMP. It can also be shown that small cAMP pulses induce a high output of cAMP, which demonstrates signal amplification, a function necessary for a cellular relay system.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Cited by 165 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3