A double-population chaotic self-adaptive evolutionary dynamics model for the prediction of supercritical carbon dioxide solubility in polymers

Author:

Wu Yan123ORCID,Zhang Hang4,Li Meng-shan4ORCID,Sheng Sheng13,Wang Jun13,Wu Fu-an13

Affiliation:

1. School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, People's Republic of China

2. School of Mathematics and Computer Science, Gannan Normal University, Ganzhou Jiangxi 341000, People's Republic of China

3. Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, People's Republic of China

4. College of Physics and Electronic Information, Gannan Normal University, Ganzhou Jiangxi 341000, People's Republic of China

Abstract

Solubility of gas in polymers is an important physico-chemical property of foam materials and widely used in the preparation and modification of new materials. Under the conditions of high temperature and high pressure, the dissolution process is a nonlinear, non-equilibrium and dynamic process, so it is difficult to establish an accurate solubility calculation model. Inspired by particle dynamics and evolutionary algorithm, this paper proposes a hybrid model based on chaotic self-adaptive particle dynamics evolutionary algorithm (CSA-PD-EA), which can use the iterative process of particles in evolutionary algorithms at the dynamic level to simulate the mutual diffusion process of molecules during dissolution. The predicted solubility of supercritical CO 2 in poly(d,l-lactide- co -glycolide), poly(l-lactide) and poly(vinyl acetate) indicated that the comprehensive prediction performance of the CSA-PD-EA model was high. The calculation error and correlation coefficient were, respectively, 0.3842 and 0.9187. The CSA-PD-EA model showed prominent advantages in accuracy, efficiency and correlation over other computational models, and its calculation time was 4.144–15.012% of that of other dynamic models. The CSA-PD-EA model has wide application prospects in the computation of physical and chemical properties and can provide the basis for the theoretical calculation of multi-scale complex systems in chemistry, materials, biology and physics.

Funder

National Natural Science Foundation of China

research project of the education

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3