Chapman-Jouguet deflagrations

Author:

Abstract

Two types of quasi-steady high-speed deflagration have been observed experimentally. In the first place they are reaction-waves created in, and propagating through, rough tubes and tubes that contain obstacles; in the second place they are deflagrations created from established detonations by eliminating the transverse waves from the latter’s structure. Changes in tube roughness, obstacle size and tube diameter have no significant influence on the speeds at which the deflagrations propagate. These speeds are close to sonic relative to product gases flowing out of the reaction-waves, and both classes of deflagration are observed to travel at about one-half of the corresponding Chapman-Jouguet (CJ) detonation speed. A theoretical analysis has been carried out on a configuration that consists of a plane precursor shock-wave driven by a plane CJ deflagration. Results agree very well with observations and support the idea that, at least for the duration of these observations, this combination of shock and deflagration is controlled by the energetics of the reacting mixture.

Publisher

The Royal Society

Subject

General Medicine

Reference12 articles.

1. On the direct initiation of a plane detonation wave

2. On the evolution of plane detonations

3. Propagation of detonation waves in an acoustic absorbing walled tube;Dupre G.;Proc. Astronaut. Aeronaut.,1988

4. Transmission of a flame from a rough to a smooth-walled tube;Knystautas R.;Prog. Astronaut. Aeronaut.,1986

5. Lee J. H. 1986 The propagation of turbulent flames and detonations in tubes. In Advances in chemical reaction dynamics (ed. P. M. Rentzepis & C. Capellos) pp. 246-378.

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3