Mixing regimes in a spatially confined two-dimensional compressible mixing layer

Author:

Abstract

The evolution of a high-speed compressible confined temporally evolving supersonic mixing layer between hydrogen and oxygen gas streams is examined using time-dependent two-dimensional numerical simulations that include the effects of viscosity, molecular diffusion and thermal conduction. The flow shows three distinct mixing regimes: an apparently ordered, laminar stage in which the structures grow due to the initial perturbation; a convective-mixing regime in which vortices begin to interact and structures grow; and a diffusive-mixing regime in which vortical structures break down and diffusive mixing dominates. Varying the strength of the diffusion terms shows that diffusion is important in the laminar and diffusive-mixing stages, but not in the convective-mixing stage. Varying the convective Mach shows that compressiblity does not change the general structural features of the mixing process, although higher compressibility results in a slower transition between the various flow regimes. Increasing the size of the computational domain increases the absolute time of transition from convective to diffusive mixing, but does not affect the dimensionless time normalized to the system size. Comparisons between full Navier–Stokes computations at different levels of numerical resolution show that the measurements of scalar mixing converge for resolutions at an order of magnitude greater than the Kolmogorov scale, although measurements of turbulence intensity are more sensitive to grid size.

Publisher

The Royal Society

Subject

General Medicine

Reference38 articles.

1. Batchelor G. K. 1969 Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids suppl. II 233-239.

2. Compressibility Effects in Turbulent Shear Layers

3. Solution of convective equations by the method of flux-corrected transport;Boris J. P.;Meth. Comput. Phys.,1976

4. On large eddy simulation using subgrid turbulence models. In Whither turbulence? or turbulence at the crossroads (ed. J. L. Lumley);Boris J. P.;Lecture Notes in Physics,1990

5. New insights into large eddy simulation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3