A general recursion method for calculating diffracted intensities from crystals containing planar faults

Author:

Abstract

A general recursion algorithm is described for calculating kinematical diffraction intensities from crystals containing coherent planar faults. The method exploits the self-similar stacking sequences that occur when layers stack non-deterministically. Recursion gives a set of simple relations between average interference terms from a statistical crystal, which can be solved as a set of simultaneous equations. The diffracted intensity for a polycrystalline sample is given by the incoherent sum of scattered intensities over an ensemble of crystallites. The relations between this and previous approaches, namely the Hendricks-Teller matrix formulation, the difference equation method, the summed series formula of Cowley, and Michalski’s recurrence relations between average phase factors, are discussed. Although formally identical to these previous methods, the present recursive description has an intuitive appeal and proves easier to apply to complex crystal structure types. The method is valid for all types of planar faults, can accommodate long-range stacking correlations, and is applicable to crystals that contain only a finite number of layers. A FORTRAN program DIFFaX , based on this recursion algorithm, has been written and used to simulate powder X-ray (and neutron) diffraction patterns and single crystal electron (kinematical) diffraction patterns. Calculations for diamond-lonsdaleite and for several synthetic zeolite systems that contain high densities of stacking faults are presented as examples.

Publisher

The Royal Society

Subject

General Medicine

Cited by 634 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3