The law of the wall in turbulent flow

Author:

Abstract

The ‘law of the wall’ for the inner part of a turbulent shear flow over a solid surface is one of the cornerstones of fluid dynamics, and one of the very few pieces of turbulence theory whose results include a simple analytic function for the mean velocity distribution, the logarithmic law. Various aspects of the law have recently been questioned, and this paper is a summary of the present position. Although the law of the wall for velocity has apparently been confirmed by experiment well outside its original range, the law of the wall for temperature seems to apply only to very simple flows. Since the two laws are derived by closely analogous arguments this throws suspicion on the law of the wall for velocity. Analysis of simulation data, for all the Reynolds stresses including the shear stress, shows that law-of-the-wall scaling fails spectacularly in the viscous wall region, even when the logarithmic law is relatively well behaved. Virtually all turbulence models are calibrated to reproduce the law of the wall in simple flows, and we discuss whether, in practice or in principle, their range of validity is larger than that of the law of the wall itself: the present answer is that it is not; so that when the law of the wall (or the mixing-length formula) fails, current Reynolds-averaged turbulence models are likely to fail too.

Publisher

The Royal Society

Subject

General Medicine

Reference58 articles.

1. Scaling laws for fully developed turbulent shear flows. Part 1. Basic hypotheses and analysis

2. Scaling laws for fully developed turbulent shear flows. Part 2. Processing of experimental data

3. A three-dimensional law of the wall for turbulent shear flows

4. Blackwell B. F. Kays W. M. & Moffat R. J. 1972 The turbulent boundary layer on a porous plate: an experimental study of the heat transfer behavior with adverse pressure gradients. Report HMT-16 Department of Mechanical Engineering Stanford University.

5. ‘Inactive’ motion and pressure fluctuations in turbulent boundary layers

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3