Mutual friction in a heat current in liquid helium II. II. Experiments on transient effects

Author:

Abstract

It was shown in part I that, when helium II is carrying a steady heat current on which is superimposed a second-sound wave, the mutual friction acting between the two fluids (the Gorter-Mellink force) is of the form G (v s - v n ), where (v s - v n ) is the instantaneous relative velocity between the fluids, and the factor G is proportional to the square of the time average of this relative velocity. The present paper describes some experimental studies that have been made of the manner in which G changes when the heat current in a wide (~ 2 mm) channel is suddenly changed from one steady value to another; the changes in G have been observed as changes in the attenuation of second sound, and, where possible, as changes in the temperature gradient in the helium. It has been found, for example, that, when a steady supercritical heat current is suddenly switched on in initially undisturbed helium, G rises to its equilibrium value only after a delay time which is of the order of 1s, and that, when the heat current is removed, a non-zero value of G persists for at least 30s. The results indicate that the Gorter-Mellink force is probably associated with turbulence in the superfluid. It is suggested that the force may therefore be due fundamentally to the presence in the superfluid of motions for which curl v s ≠ 0, and it is recalled that experimental evidence in favour of this view has been provided by the recent discovery (Hall & Vinen 1956 a ) that a mutual friction acts in helium that is simply in a state of uniform rotation.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference2 articles.

1. F eyn m an R . P . 1955 Progress A m sterdam : N orth H olland Publishing Co.

2. Physica, 15, 285. inlow temperature physics, ed;Gorter C. J.;C. J. Gorter,1949

Cited by 283 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3