Perturbation effects due to hydrogen bonding in physical adsorption studied by length-change and infra-red techniques

Author:

Abstract

Effects due to hydrogen bonding between physically adsorbed molecules and the hydroxyl groups present on the surface of porous silica glass have been studied. Three methods have been used. As well as the classical isotherms, length changes of the adsorbent have been measured using an interferometer, and infra-red absorption spectra have been obtained both of the surface OH groups and the adsorbed molecules. Contractions of the rigid adsorbent, found under certain conditions at low coverages, are shown to be directly related to the strengths and number of the hydrogen bonds formed between the OH groups and the adsorbed molecules. More than half the surface OH groups were replaced by OCH 3 groups by methylation. Experiments performed on the glass after this treatment showed that the contractions had almost completely disappeared. It has been shown that two types of adsorption sites exist, one being the OH groups and the other the silicon or oxygen atoms. With acetone and ammonia, it has been shown spectroscopically that the energy of adsorption is lower on the OH sites than on the others. Consequently, as the temperature is raised the distribution of the adsorbed molecules between the two sites changes. Thus the marked decrease in the contractions with increase of temperature reported previously (Folman & Yates 1958) is due to the weakening of the hydrogen bonding with increase in temperature and also to a decrease in the relative numbers of the adsorbed molecules which are hydrogen-bonded. On the basis of all the results, a model of the surface conditions is proposed, which may explain the occurrence of the contractions found when hydrogen bonding is operative.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference2 articles.

1. Badger R. M. 1940

2. J;Badger R. M.;Chem. Phys.,1937

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3