Preparation of Magnetic Drug Loaded Nanoparticles and Its Anticancer Efficacy Against Nasopharyngeal Carcinoma Cells

Author:

Chen Jingjing1,Kang Cheng2

Affiliation:

1. Department of Otolaryngology, Head & Neck Surgery Ningbo Medical Centre of Lihuili Hospital, Ningbo, 315040, China

2. Department of Otolaryngology-Head & Neck Surgery, Huamei Hospital, University of Chinese Academy of Sciences, Ningbo, 315000, China

Abstract

As an important drug for the treatment of cancer, cis-diamine dichloroplatinum (CDDP) has poor solubility and antagonistic effect when it is used as a chemotherapy agent alone, leading to the insufficient dose in actual administration. In order to solve the above problems, increase the targeting property of CDDP carrier and prolong the half-life period of CDDP’s sustained-release, it is necessary to design a magnetic nano-carrier for CDDP with magnetic targeting function to reduce the damage of CDDP to normal tissues in vivo and improve the therapeutic effect of cancer. Carboxymethyl chitosan (CMCS) is used to directly coat oleic acid (OA)-modified Fe3O4 nanoparticles (OA-Fe3O4 NPs) to create the nano-scale CMCS magnetic nanoparticles (CMCS/OA-Fe2O3 NPs), and CDDP loaded magnetic nanoparticles (CMCS/OA-Fe2O3 NPs/CDDP) are prepared by the bonding interaction between carboxyl groups on the surface of CMCS and the anticancer drug CDDP. The magnetic drug loaded nanoparticles are characterized, and the results show that the magnetic nanoparticles are successfully embedded in CMCS and loaded with CDDP, with the drug load of 43.65 ± 2.37%. MTT assay, flow cytometry and invasion assay are applied to evaluate the inhibitory effect of magnetic drug loaded nanoparticles to nasopharyngeal carcinoma (NPC) cells HNE-1. The results suggest that the magnetic drug loaded nanoparticles successfully prepared have significant inhibitory effect on HNE-1 cells in vitro. Therefore, the magnetic drug loaded nanoparticles prepared have a good therapeutic effect on NPC.

Publisher

American Scientific Publishers

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3