Magneto Chemically Reacting Micropolar Nanofluid Flow in Existence of Heat Source/Sink

Author:

Das Kalidas1,Acharya Nilangshu2,Kundu Prabir Kumar3,Duari Pinaki Ranjan4

Affiliation:

1. Department of Mathematics, Krishnagar Government College, Krishnagar, 741101, West Bengal, India

2. Department of Mathematics, P. R. Thakur Govt. College, Thakurnagar, 743287, West Bengal, India

3. Department of Mathematics, Jadavpur University, Kolkata, 700032, West Bengal, India

4. Department of Basic Science & Humanities (Mathematics Section), Asansol Engineering College, Asansol, 713305, West Bengal, India

Abstract

The purpose of the current study is to focus on magneto hydrodynamic micropolar nanofluid flow together with heat source/sink towards a linearly stretching sheet that has been investigated numerically. The whole analysis has been carried out considering the influence of the Brownian motion and thermophoresis in existence of a chemical reaction of order one between base fluid and nanoparticles. A similarity transformation technique has been imposed to convert non-linear leading system of partial differential equations toward system of ordinary ones and then they are solved with the help of Runge-Kutta-Fehlberg method with shooting procedure. The physical traits of the problem like dimensionless temperature profiles, concentration profiles, and rate of heat and mass transfers are demonstrated using tabular and graphical outlines.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3