Radiative Heat Transfer of Hybrid Nanofluid Flow Over an Expanding Surface with the Interaction of Joule Effect

Author:

Sharma Ram Prakash1,Mishra S. R.2,Tinker Seema3,Kulshrestha B. K.4

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Arunachal Pradesh, Jote, Papum Pare District, 791113, Arunachal Pradesh, India

2. Department of Mathematics, Siksha ‘O’ Anusandhan Deemed to be University, Khandagiri, Bhubaneswar 751030, Odisha, India

3. Department of Mathematics, JECRC University, Jaipur 303905, India

4. Research Scholar, Department of Basic and Applied Science, NIT, 791113, Arunachal Pradesh, India

Abstract

The current research examines the characteristic of dissipative heat energy owing to the inclusion of a magnetic field here on the two-dimensional flow of an electrically conducting hybrid nanofluid past an expanding surface. Additionally, the free convection of hybrid nanofluid thermal properties is enhanced with the inclusion of the Joule heating effect as well as the thermal radiation in the heat transfer phenomenon. These physical properties were influenced as a result of the combination of the nanoparticles Al2O3 and Cu into the base liquid ethylene glycol. The novelty arises due to the interaction of thermal conductivity employing the Mintsa model and the viscosity using the Gharesim model. The transformed governing set of nonlinear equations obtained with the assistance of suitable similarity transformations are solved numerically using the Runge-Kutta fourth-order shooting base technique. A good correlation between the earlier studies is obtained in specific cases showing the convergence criteria of the present procedure. Further, the physical significance of the contributive parameters is presented through graphs and tables. The observation shows that the particle concentration for the hybrid nanofluid augments the fluid velocity. Moreover, the inclusion of dissipative heat favors enhancing the fluid temperature for the involvement of the particle concentration.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3