Design of Low Power Temperature Sensor Based on Full Resistance Frequency Domain Readout

Author:

Zengjun Wang1,Xian Yu1

Affiliation:

1. Guangxi Natural Resources Vocational and Technical College, Nanning, Guangxi, 532199, PR China

Abstract

Combining with on-chip heat management application scenario, firstly, this paper introduces the advantages of resistance-based frequency-domain readout all-digital temperature sensor and its poor ability to resist power supply fluctuation, as well as the existing solutions, the basic principle of digital temperature sensor with anti-power fluctuation suppression is analyzed, and its feasibility is proved by system modeling and theoretical analysis. Secondly, based on the proposed architecture, a new kind of near-digital temperature sensor architecture is proposed, which adopts a ring oscillator dominated by leakage current, thus it can work directly in a wide voltage range from 0.8 V to 1.3 V without the need for a separate regulator. Finally, to further optimize the power consumption, a delay cell structure with lower power consumption and stronger robustness is proposed to further reduce the overall power consumption. The results show that the improved temperature sensor achieves lower power consumption and higher energy efficiency while keeping a small area, and it is advanced compared with other high level temperature sensors.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3