Design of Low Power Temperature Sensor Based on 180 nm Complementary Metal Oxide Semiconductor Technology

Author:

Liang Wenbin1,Luo Zhenzhen2,Yu Xian3,Chen Xiaoyan3

Affiliation:

1. School of Electronics and Automation, Guilin University of Aerospace Technology, Guilin, 541004, P.R.China

2. Guilin Institute of Information Technology, Guilin, 541004, P.R.China

3. Guangxi Natural Resources Vocational and Technical College, Nanning, Guangxi, 532199, P.R.China

Abstract

CMOS temperature sensor is widely used in power monitoring system, power consumption is an important index. The digital filter power consumption is one of the main sources of the temperature sensor power consumption, and limiting the Digital filter power consumption becomes an important method to realize the low power consumption of the temperature sensor. Based on this, a low power digital filter for CMOS temperature sensors is designed, and a precision adaptive digital filter is proposed, the filter is cascaded by a recursive CIC filter and a FIR filter based on a shift adder, the order of CIC filter and FIR filter can be adjusted according to the difference between the measured temperature and the threshold temperature range set by the user, when the measured temperature is outside the threshold temperature range, the operation unit in the filter is selectively switched off, which makes the power consumption of the filter decrease. For the temperature range that does not need to be monitored, the requirement of temperature measurement accuracy is usually not high, if high-precision temperature monitoring is still carried out, it will have a lot of unnecessary power consumption, in this paper, an adaptive precision digital filter is used to solve the problem. In order to further reduce the power consumption of the temperature sensor, according to the characteristics of the slow change of the temperature signal, a single temperature conversion combined with idle off mode is adopted, the FIR filter power consumption is reduced by 5.5% by optimizing the single temperature conversion operation. The temperature sensor is realized by 180 nm CMOS process. The results show that the sensor can achieve an accuracy of 0.47 °C in the temperature range of −55–115 °C when the measured temperature is in the threshold temperature range, under 1.8 V supply voltage, the power consumption of the digital part of the sensor is 20.15 μw. When the measured temperature is outside the threshold temperature range, the power consumption of the digital part of the sensor can be reduced by 11.3%.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3