Etch Characteristics of Nanoscale Patterned Magnetic Tunnel Junction Stacks Using Pulse-Modulated Radio Frequency Source Plasma

Author:

Lee Jae Yong1,Lim Eun Tack1,Ryu Jin Su1,Choi Jae Sang1,Chung Chee Won1

Affiliation:

1. Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University, 100 Inharo, Michuhol-Gu, Incheon 22212, Korea

Abstract

Magnetic tunnel junctions (MTJs) patterned with 70 × 70 nm2 square arrays were etched in a CH4/O2/Ar gas mixture by pulse-modulated inductively coupled plasma reactive ion etching (ICPRIE). A good etch profile of MTJs with etch slope of approximately 82° was achieved by adjusting the on–off duty ratio of the plasma and pulse frequency. Langmuir probe analysis and optical emission spectroscopy confirmed that the balance between the formation of the passivation layer as an etch byproduct and sputtering effect is responsible for the etch selectivity and etch profile with a high degree of anisotropy. It is concluded that the application of pulse-modulated plasma on ICPRIE can be an effective method to obtain the anisotropic etch profile of nanometer-scale MTJs.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3