Study of the Mechanical Properties and Toughening Mechanism of Nano-NbC Particles Toughened Si3N4-Based Ceramics

Author:

Tian Liang1,Hou Qinglin1,Wang Yingxia1,Hou Yihui1,Li Li1

Affiliation:

1. Department of Chemical Engineering, Xiangtan University, Xiangtan, 411005, Hunan, PR China

Abstract

In this article, nano-NbC particles toughened Si3N4-based ceramics were prepared by injection moulding and their mechanical properties along with toughening mechanism were studied. An increase of nano-NbC content, gradually homogenizes microstructure of the Si3N4-based ceramics along with increase in its density. However, the fracture toughness and flexural strength first increases and then decreases. The Si3N4-based ceramics demonstrate good comprehensive properties at the 15 wt% nano-NbC content and sintering temperature of 1550 °C (where the density is 85.3%, the flexural strength is 845 MPa, and the fracture toughness is 9.3 MPa·m1/2), Backscattered electron imaging shows that nano-NbC particles can be well dispersed in the Si3N4 ceramic matrix by injection moulding and ceramics are toughened by crack deflection and microcracking effects. It was also found that increasing sintering temperature makes the β-Si3N4 grain distribution more uniform by reducing the porosity.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3