Effect of Initial Synaptic State on Pattern Classification Accuracy of 3D Vertical Resistive Random Access Memory (VRRAM) Synapses

Author:

Sun Wookyung1,Choi Sujin1,Kim Bokyung1,Shin Hyungsoon1

Affiliation:

1. Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, Republic of Korea

Abstract

Amidst the considerable attention artificial intelligence (AI) has attracted in recent years, a neuromorphic chip that mimics the biological neuron has emerged as a promising technology. Memristor or Resistive random-access memory (RRAM) is widely used to implement a synaptic device. Recently, 3D vertical RRAM (VRRAM) has become a promising candidate to reducing resistive memory bit cost. This study investigates the operation principle of synapse in 3D VRRAM architecture. In these devices, the classification response current through a vertical pillar is set by applying a training algorithm to the memristors. The accuracy of neural networks with 3D VRRAM synapses was verified by using the HSPICE simulator to classify the alphabet in 7×7 character images. This simulation demonstrated that 3D VRRAMs are usable as synapses in a neural network system and that a 3D VRRAM synapse should be designed to consider the initial value of the memristor to prepare the training conditions for high classification accuracy. These results mean that a synaptic circuit using 3D VRRAM will become a key technology for implementing neural computing hardware.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3