Affiliation:
1. Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
Abstract
Amidst the considerable attention artificial intelligence (AI) has attracted in recent years, a neuromorphic chip that mimics the biological neuron has emerged as a promising technology. Memristor or Resistive random-access memory (RRAM) is widely used to implement a synaptic device.
Recently, 3D vertical RRAM (VRRAM) has become a promising candidate to reducing resistive memory bit cost. This study investigates the operation principle of synapse in 3D VRRAM architecture. In these devices, the classification response current through a vertical pillar is set by applying
a training algorithm to the memristors. The accuracy of neural networks with 3D VRRAM synapses was verified by using the HSPICE simulator to classify the alphabet in 7×7 character images. This simulation demonstrated that 3D VRRAMs are usable as synapses in a neural network system and
that a 3D VRRAM synapse should be designed to consider the initial value of the memristor to prepare the training conditions for high classification accuracy. These results mean that a synaptic circuit using 3D VRRAM will become a key technology for implementing neural computing hardware.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献