Synthesis of Hollow Carbon Microspheres with Tunable Shell Numbers for High-Performance Anode Material in Lithium-Ion Batteries

Author:

Zeng Guilin1,Zhou Wei1,Zheng Jialing1,Fan Zhanhua1,Chen Han1

Affiliation:

1. College of Metallurgy and Materials Engineering, Hunan University of Technology, Zhuzhou 412008, China

Abstract

In this paper, hollow carbon microspheres (HCMs) with tunable shell numbers were controllably synthesized by the combination of facile hydrothermal method and etching treatment. The microstructure, morphology and electrochemical performance of HCMs were investigated by X-ray photoelectron, spectra SEM and TEM measurements, and galvanostatic charge–discharge tests. The size of HCMs was uniform and increased with increasing the number of inner carbon shells. Compared to the single-layer carbon microspheres and double-layer carbon microspheres, threelayer HCMs (TLCs) with diameters of 310–360 nm exhibited the highest reversible capacity presenting original discharge and charge capacity of 626.04 and 575.68 mAh·g−1 at 0.1 C. Moreover, the capacitance retention reached to 360 mAh ·g−1 and charge–discharge efficiency was still over 97% after 100 cycles. The superior properties of TLCs can be mainly attributed to their unique three-layer hollow structure which can significantly enhance the pore volume and specific surface area, and thus provides more Li-ions reaction sites and larger contact area between electrodes. Furthermore, the design strategy of HCMs is expected to provide a novel guidance for the design of multi-layer carbon structure with improved electrochemical properties.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3