Assessing the Stability of Inkjet-Printed Carbon Nanotube for Brine Sensing Applications

Author:

Marbou Khalid1,Gil Waqas1,Ghaferi Amal Al1,Saadat Irfan2,Alhammadi Khalid2,Khair Aseel Mohammed3,Younes Hammad1

Affiliation:

1. Department of Mechanical Engineering, Khalifa University of Science and Technology, P.O. Box 54224, Abu Dhabi, United Arab Emirates

2. Department of Electrical and Computer Engineering, Khalifa University of Science and Technology, P.O. Box 54224, Abu Dhabi, United Arab Emirates

3. Basic Science Department, Imam Abdulrahman Bin Faisal University, P.O. Box 127788, Dammam, Saudi Arabia

Abstract

In hostile environments, sensing is critical for many industries such as chemical and oil/gas. Within this industry, the deposition of scales or minerals on various infrastructure components (e.g., pipelines) forms a reliability hazard that needs to be monitored. Therefore, the approach adopted in this study to tackle this issue relies on the use of real-time sensing of specific ions in brine, the natural trigger for ions deposition. In order to do so, electrochemical sensors based on carbon nanotubes (CNTs) are developed, taking advantage of their unique properties facilitated by different synthesis and fabrication methods. One of these promising synthesis methods is inkjet printing of CNT films since in general, it has exceptional benefits over other approaches that are used to print CNTs. Furthermore, it does not need the use templates. In addition, it is a very fast technique with consistent printing results for many applications along with very low cost on various shapes/formfactors. As these sensors are exposed to a hostile environment (chemical, temperature, etc.), the stability of the CNT films is of great importance. In this study, a comprehensive investigation of the stability of CNT surfaces upon exposure to elements is presented. Accordingly, the several impacts of this interaction on physical properties of the surfaces as a function of interaction time and brine chemical composition are assessed. Moreover, the approach used for investigating the impact of this exposure involves the following: surface electrical resistance change using four probe measurements; surface roughness/topography using Atomic Force Microscopy (AFM) along Scanning Electron Microscopy (SEM); quality of CNT through Raman spectroscopy and wettability using the sessile drop method. The sensing capabilities of the devices are investigated by looking at the sensing selectivity of target ions, resetting capabilities, and sensing sensitivity manifested in the electrical resistance change. Consequently, our results indicate that while inkjet films are very promising sensor material, the fabrication and long term stability require further optimization of the films along with the process to make them meet reliability and lifetime requirements in the oil/gas hostile operational environments.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3