Bacterial Isolation by Adsorption on Graphene Oxide from Large Volume Sample

Author:

Yoo Hyun Jin1,Mohammadniaei Mohsen1,Min Junhong1,Baek Changyoon1

Affiliation:

1. School of Integrative Engineering, Chung-Ang University, Seoul 06974, South Korea

Abstract

Graphene oxide (GO) is a well-known two-dimensional nanomaterial with broad applications in various fields. In particular, the functional groups of GO has demonstrated significance in the molecular binding interactions. GO is normally coated on a solid surface as it is difficult to handle due to its nano-scaled size. Therefore, chemical properties of surface-coated GO depend on the morphological structure of GO on the surface and the operating conditions during the coating process. Isolation of bacteria from environmental samples such as river and pond water is important for increasing the analytical sensitivity of sensor devices. The main issue in isolation of bacteria from an environmental sample is adsorption capacity per unit time. However, increasing the velocity of water sample to elevate the process rate induces high shear stress on the surface, such that the bacteria adsorption rate on the surface is reduced. In this study, we investigated the morphological and chemical properties of sonicated GO and GO-coated surface by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The sonicated GO-coated beads were successfully used for concentrating bacteria from a large-volume sample as opposed to the conventional methods. It can be concluded that, GO-coated surfaces are prospective platforms for concentrating bacteria from various samples and play a major role in reducing the concentration time.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3